Что больше скорость света или скорость – Отличная статья, расширяющая сознание. Существует ли скорость больше скорости света?

Что быстрее скорости света


Верхний предел скорости известен даже школьникам: связав массу и энергию знаменитой формулой, Альберт Эйнштейн еще в начале ХХ века указал на принципиальную невозможность ничему, обладающему массой, перемещаться в пространстве быстрее, чем скорость света в вакууме. Однако уже в этой формулировке содержатся лазейки, обойти которые вполне по силам некоторым физическим явлениям и частицам. 
По крайней мере, явлениям, существующим в теории.
Первая лазейка касается слова «масса»: на безмассовые частицы эйнштейновские ограничения не распространяются. Не касаются они и некоторых достаточно плотных сред, в которых скорость света может быть существенно меньше, чем в вакууме. Наконец, при приложении достаточной энергии само пространство может локально деформироваться, позволяя перемещаться так, что для наблюдателя со стороны, вне этой деформации, движение будет происходить словно быстрее скорости света.
Некоторые такие «сверхскоростные» явления и частицы физики регулярно фиксируют и воспроизводят в лабораториях, даже применяют на практике, в высокотехнологичных инструментах и приборах. Другие, предсказанные теоретически, ученые еще пытаются обнаружить в реальности, а на третьи у них большие планы: возможно, когда-нибудь эти явления позволят и нам перемещаться по Вселенной свободно, не ограничиваясь даже скоростью света.


Квантовая телепортация
Телепортация живого существа – хороший пример технологии, теоретически допустимой, но практически, видимо, неосуществимой никогда. Но если речь идет о телепортации, то есть мгновенном перемещении из одного места в другое небольших предметов, а тем более частиц, она вполне возможна. Чтобы упростить задачу, начнем с простого – частиц.
Кажется, нам понадобятся аппараты, которые (1) полностью пронаблюдают состояние частицы, (2) передадут это состояние быстрее скорости света, (3) восстановят оригинал.
Однако в такой схеме даже первый шаг полностью реализовать невозможно. Принцип неопределенности Гейзенберга накладывает непреодолимые ограничения на точность, с которой могут быть измерены «парные» параметры частицы. Например, чем лучше мы знаем ее импульс, тем хуже – координату, и наоборот. Однако важной особенностью квантовой телепортации является то, что, собственно, измерять частицы и не надо, как не надо ничего и восстанавливать – достаточно получить пару спутанных частиц.
Например, для приготовления таких спутанных фотонов нам понадобится осветить нелинейный кристалл лазерным излучением определенной волны. Тогда некоторые из входящих фотонов распадутся на два спутанных – необъяснимым образом связанных, так что любое изменение состояния одного моментально сказывается на состоянии другого. Эта связь действительно необъяснима: механизмы квантовой спутанности остаются неизвестны, хотя само явление демонстрировалось и демонстрируется постоянно. Но это такое явление, запутаться в котором в самом деле легко – достаточно добавить, что до измерения ни одна из этих частиц не имеет нужной характеристики, при этом какой бы результат мы ни получили, измерив первую, состояние второй странным образом будет коррелировать с нашим результатом.
Механизм квантовой телепортации, предложенный в 1993 году Чарльзом Беннеттом и Жилем Брассардом, требует добавить к паре запутанных частиц всего одного дополнительного участника – собственно, того, кого мы собираемся телепортировать. Отправителей и получателей принято называть Алисой и Бобом, и мы последуем этой традиции, вручив каждому из них по одному из спутанных фотонов. Как только они разойдутся на приличное расстояние и Алиса решит начать телепортацию, она берет нужный фотон и измеряет его состояние совместно с состоянием первого из спутанных фотонов. Неопределенная волновая функция этого фотона коллапсирует и моментально отзывается во втором спутанном фотоне Боба.
К сожалению, Боб не знает, как именно его фотон реагирует на поведение фотона Алисы: чтобы понять это, ему надо дождаться, пока она пришлет результаты своих измерений обычной почтой, не быстрее скорости света. Поэтому никакую информацию передать по такому каналу не получится, но факт останется фактом. Мы телепортировали состояние одного фотона. Чтобы перейти к человеку, остается масштабировать технологию, охватив каждую частицу из всего лишь 7000 триллионов триллионов атомов нашего тела, – думается, от этого прорыва нас отделяет не более, чем вечность.
Однако квантовая телепортация и спутанность остаются одними из самых «горячих» тем современной физики. Прежде всего потому, что использование таких каналов связи обещает невзламываемую защиту передаваемых данных: чтобы получить доступ к ним, злоумышленникам понадобится завладеть не только письмом от Алисы к Бобу, но и доступом к спутанной частице Боба, и даже если им удастся до нее добраться и проделать измерения, это навсегда изменит состояние фотона и будет сразу же раскрыто.

Эффект Вавилова – Черенкова
Этот аспект путешествий быстрее скорости света – приятный повод вспомнить заслуги российских ученых. Явление было открыто в 1934 году Павлом Черенковым, работавшим под руководством Сергея Вавилова, три года спустя оно получило теоретическое обоснование в работах Игоря Тамма и Ильи Франка, а в 1958 г. все участники этих работ, кроме уже скончавшегося Вавилова, были награждены Нобелевской премией по физике.
В самом деле, теория относительности говорит лишь о скорости света в вакууме. В других прозрачных средах свет замедляется, причем довольно заметно, в результате чего на их границе с воздухом можно наблюдать преломление. Коэффициент преломления стекла равен 1,49 – значит, фазовая скорость света в нем в 1,49 раза меньше, а, например, у алмаза коэффициент преломления уже 2,42, и скорость света в нем снижается более чем в два раза. Другим частицам ничто не мешает лететь и быстрее световых фотонов.
Именно это произошло с электронами, которые в экспериментах Черенкова были выбиты высокоэнергетическим гамма-излучением со своих мест в молекулах люминесцентной жидкости. Этот механизм часто сравнивают с образованием ударной звуковой волны при полете в атмосфере на сверхзвуковой скорости. Но можно представить и как бег в толпе: двигаясь быстрее света, электроны проносятся мимо других частиц, словно задевая их плечом – и на каждый сантиметр своего пути заставляя сердито излучать от нескольких до нескольких сотен фотонов.
Вскоре такое же поведение было обнаружено и у всех других достаточно чистых и прозрачных жидкостей, а впоследствии излучение Черенкова зарегистрировали даже глубоко в океанах. Конечно, фотоны света с поверхности сюда действительно не долетают. Зато сверхбыстрые частицы, которые вылетают от небольших количеств распадающихся радиоактивных частиц, время от времени создают свечение, возможно, худо-бедно позволяющее видеть местным жителям.
Излучение Черенкова – Вавилова нашло применение в науке, ядерной энергетике и смежных областях. Ярко светятся реакторы АЭС, битком набитые быстрыми частицами. Точно измеряя характеристики этого излучения и зная фазовую скорость в нашей рабочей среде, мы можем понять, что за частицы его вызвали. Черенковскими детекторами пользуются и астрономы, обнаруживая легкие и энергичные космические частицы: тяжелые невероятно трудно разогнать до нужной скорости, и излучения они не создают.

Пузыри и норы
Вот муравей ползет по листу бумаги. Скорость его невелика, и на то, чтобы добраться от левого края плоскости до правого, у бедняги уходит секунд 10. Но стоит нам сжалиться над ним и согнуть бумагу, соединив ее края, как он моментально «телепортируется» в нужную точку. Нечто подобное можно проделать и с нашим родным пространством-временем, с той лишь разницей, что изгиб требует участия других, невоспринимаемых нами измерений, образуя туннели пространства-времени, – знаменитые червоточины, или кротовые норы.
Кстати, согласно новым теориям, такие кротовые норы – это некий пространственно-временной эквивалент уже знакомого нам квантового феномена запутанности. Вообще, их существование не противоречит никаким важным представлениям современной физики, включая общую теорию относительности. Но вот для поддержания такого туннеля в ткани Вселенной потребуется нечто, мало похожее на настоящую науку, – гипотетическая «экзотическая материя», которая обладает отрицательной плотностью энергии. Иначе говоря, это должна быть такая материя, которая вызывает гравитационное… отталкивание. Трудно представить, что когда-нибудь эта экзотика будет найдена, а тем более приручена.
Своеобразной альтернативой кротовым норам может служить еще более экзотическая деформация пространства-времени – движение внутри пузыря искривленной структуры этого континуума. Идею высказал в 1993 году физик Мигеле Алькубьерре, хотя в произведениях фантастов она звучала намного раньше. Это как космический корабль, который движется, сжимая и сминая пространство-время перед своим носом и снова разглаживая его позади. Сам корабль и его экипаж при этом остаются в локальной области, где пространство-время сохраняет обычную геометрию, и никаких неудобств не испытывают. Это прекрасно видно по популярному в среде мечтателей сериалу «Звездный путь», где такой «варп-двигатель» позволяет путешествовать, не скромничая, по всей Вселенной.

Тахионы
Фотоны – частицы безмассовые, как и нейтрино и некоторые другие: их масса в покое равна нулю, и чтобы не исчезнуть окончательно, они вынуждены всегда двигаться, и всегда – со скоростью света. Однако некоторые теории предполагают существование и куда более экзотических частиц – тахионов. Масса их, фигурирующая в нашей любимой формуле E = mc2, задается не простым, а мнимым числом, включающим особый математический компонент, квадрат которого дает отрицательное число. Это очень полезное свойство, и сценаристы любимого нами сериала «Звездный путь» объясняли работу своего фантастического двигателя именно «обузданием энергии тахионов».
В самом деле, мнимая масса делает невероятное: тахионы должны терять энергию, ускоряясь, поэтому для них все в жизни обстоит совсем не так, как мы привыкли думать. Сталкиваясь с атомами, они теряют энергию и ускоряются, так что следующее столкновение будет еще более сильным, которое отнимет еще больше энергии и снова ускорит тахионы вплоть до бесконечности. Понятно, что такое самоувлечение просто нарушает базовые причинно-следственные зависимости. Возможно, поэтому изучают тахионы пока лишь теоретики: ни единого примера распада причинно-следственных связей в природе пока никто не видел, а если вы увидите, ищите тахион, и Нобелевская премия вам обеспечена.
Однако теоретики все же показали, что тахионы, может, и не существуют, но в далеком прошлом вполне могли существовать, и, по некоторым представлениям, именно их бесконечные возможности сыграли важную роль в Большом взрыве. Присутствием тахионов объясняют крайне нестабильное состояние ложного вакуума, в котором могла находиться Вселенная до своего рождения. В такой картине мира движущиеся быстрее света тахионы – настоящая основа нашего существования, а появление Вселенной описывается как переход тахионного поля ложного вакуума в инфляционное поле истинного. Стоит добавить, что все это вполне уважаемые теории, несмотря на то, что главные нарушители законов Эйнштейна и даже причинно-следственной связи оказываются в ней родоначальниками всех причин и следствий.

Скорость тьмы
Если рассуждать философски, тьма – это просто отсутствие света, и скорости у них должны быть одинаковые. Но стоит подумать тщательнее: тьма способна принимать форму, перемещающуюся куда быстрее. Имя этой формы – тень. Представьте, что вы показываете пальцами силуэт собаки на противоположной стене. Луч от фонаря расходится, и тень от вашей руки становится намного больше самой руки. Достаточно малейшего движения пальца, чтобы тень от него на стене сместилась на заметное расстояние. А если мы будем отбрасывать тень на Луну? Или на воображаемый экран еще дальше?..
Едва заметное мановение – и она перебежит с любой скоростью, которая задается лишь геометрией, так что никакой Эйнштейн ей не указ. Впрочем, с тенями лучше не заигрываться, ведь они легко обманывают нас. Стоит вернуться в начало и вспомнить, что тьма – это просто отсутствие света, поэтому никакой физический объект при таком движении не передается. Нет ни частиц, ни информации, ни деформаций пространства-времени, есть только наша иллюзия того, что это отдельное явление. В реальном же мире никакая тьма не сможет сравниться в скорости со светом.
Источник

gipotezy.com

Скорость света — Википедия

Материал из Википедии — свободной энциклопедии

Перейти к навигации Перейти к поиску
Солнечному свету требуется в среднем 8 минут 17 секунд[Прим. 1], чтобы достигнуть Земли
Точные значения
Метров в секунду 299 792 458
Планковских единиц 1
Приблизительные значения
километров в секунду 300 000
километров в час 1,08 млрд
астрономических единиц в день 173
Приблизительное время путешествия светового сигнала
Расстояние Время
один метр 3,3 нс
один километр 3,3 мкс
от геостационарной орбиты до Земли 119 мс
длина экватора Земли 134 мс
от Луны до Земли 1,255 с
от Солнца до Земли (1 а. е.) 8,3 мин.
от Вояджера-1 до Земли 19 часов и 5 минут (на январь 2017)[1]
Один световой год 1 год
один парсек 3,26 лет
от Проксимы Центавра до Земли 4,24 лет
от Альфы Центавра до Земли 4,37 лет
от ближайшей галактики (Карликовой галактики в Большом Псе) до Земли 25 000 лет
через

ru.wikipedia.org

Что быстрее скорость звука или света?

  • Из уроков химия, я знаю что скорость света примерно в один миллион больше, чем скорость звука. Но скорость звука и света могут изменяться. Примерная скорость звука примерно 1450 м/с. Но это не постоянная величина, она может изменяться от условий где она пройдет, просто по воздуху или в воде, зависит от давления окружающей среды и температуры. То есть определенного понятия скорости звука нет, но примерные цифры уже есть. Скорость света в вакууме — 299792458 м/с. До сих пор умные люди в своих лабораториях ставят опыта для выявления создавая все новые приборы и делая новые эксперименты. 299792458 м/с эту скорость считают более точной, выявлена она была в 1975 году более точно, а в 1983 году уже начал применять в Международной Системе Единиц (СИ). Чаще всего для того, чтобы решить школьную задачку учителя разрешают округлять цифры значения ровно в 300 000 000 м/с или (3?108 м/с). А что касается на счет молнии и грома, как мне кажется друг от друга они не зависят и здесь не применимы законы скорости света и звука.

  • Да все с точностью наоборот. Скорость звука в атмосфере около 342 метра в секунду, свет эе за 1 секунду преодолевает около 300 тысяч километров. Эти величины совсем несоизмеримы. И мы видим сначала молнию, затем уж слышим гром.

  • Считается и доказано, что свет по скорости гораздо быстрее, чем скорость звука. Когда гремит гром, то можно сначала замечаем молнию, ее свет, и ее появление в небе опережает звук следующего за ней грома, и так как между ними совсем короткий промежуток времени, то вам и кажется, что сначала гром.

  • Скорость света несравненно больше скорости звука (300 тыс м/сек). При грозе мы сначала видим молнию, а потом уже слышим громовые раскаты. Если раскатов много и они частые, можно перепутать, какая молния какому грому соответствует. Отсюда ошибка.

  • Скорость света быстрее, это можно хорошо заметить на примере грома и молнии. Первое что мы видим это вспышку молнии на небе и лишь спустя несколько секунд доносятся раскаты грома. Чем дальше идет гроза, тем дольше будут доходить до нас раскаты грома.

  • Все здорово ответили на вопрос,что и добавить нечего. Но мне кажется (это только мое личное мнение) что быстрее всего скорость мысли))) Мы можем мысленно преодолевать такие расстояния, что свету нужно будет добираться туда веками)))

  • Если мы сначала услышали гром, а потом уже увидели молнию, то эта молния относится к совсем другому грому. Если попроще, то гроза выглядит так: вспышка — гром, вспышка — гром, а не наоборот. Свет распространяется намного быстрее.

  • Скорость света выше, чем скорость звука, поэтому, если во время грозы вы вначале слышали гром, а уже после увидели молнию, то скорее всего эпицентр данной грозы располагался довольно далеко от той точки, где вы находились, и вы слышали гром, сопровождающий предыдущую вспышку молнии, а молния, увиденная вами, была уже следующей, и через некоторое время за ней опять должен был последовать гром.

  • По-моему, Вы ошибаетесь — как раз наоборот: сначала мы видим молнию, а потом уже слышим гром. В детстве у нас была любимая забава во время грозы — увидев молнию, посчитать, через сколько секунд прогремит гром (так как скорость звука в воздухе примерно 1/3 км в секунду, то поделив число секунд на 3, можно узнать, на каком расстоянии от нас гроза, и приближается она, или удаляется).

    Точнее, скорость звука в воздухе 331 м/сек., а света — почти в миллион раз больше (299 792 458 м/сек.)

  • Впервые обнаружил, что скорость звука значительно отстает от скорости света еще в раннем детстве, когда о законах физики вообще не имел никакого понятия. Напротив моего дома в метрах 200-х находилась волейбольная площадка. Часто наблюдал с балкона за игрой взрослых. И очень удивился, когда заметил, что удары рук об мяч слышу с запозданием. То есть, бьют по мячу как бы бесшумно, а звук удара начинал слышать только тогда, когда мяч уже летел.Позднее понял, почему это происходит. Скорость света предельно высока — 300000 км в сек. Считается, что это максимальная физическая скорость, какая только может быть в этом мире. Скорость звука в воздухе по сравнению со скоростью света очень мала, всего лишь около 340 метров в секунду. Некоторые самолеты летают быстрее, поэтому и называются сверхзвуковыми.

  • info-4all.ru

    Отличная статья, расширяющая сознание. Существует ли скорость больше скорости света?

    В 1982 годy пpоизошло замечательное событие. Исследовательская гpyппа под pyководством Alain Aspect пpи yнивеpситете в Паpиже пpедставила экспеpимент, котоpый может оказаться одним из самых значительных в 20 веке. Вы не yслышите об этом в вечеpних новостях. Скоpее всего, вы даже не слышали имя Alain Aspect, pазве что вы имеете обычай читать наyчные жypналы, хотя есть люди, повеpившие в его откpытие и способные изменить лицо наyки.

    Aspect и его гpyппа обнаpyжили, что в опpеделенных yсловиях элементаpные частицы, напpимеp, электpоны, способны мгновенно сообщаться дpyг с дpyгом независимо от pасстояния междy ними. Hе имеет значения, 10 фyтов междy ними или 10 миллиаpдов миль.


    Атака клонов или начало конца.

    Каким-то обpазом каждая частица всегда знает, что делает дpyгая. Пpоблема этого откpытия в том, что оно наpyшает постyлат Эйнштейна о пpедельной скоpости pаспpостpанения взаимодействия, pавной скоpости света. Посколькy пyтешествие быстpее скоpости света pавносильно пpеодолению вpеменного баpьеpа, эта пyгающая пеpспектива заставила некотоpых физиков пытаться объяснить опыты Aspect сложными обходными пyтями. Hо дpyгих это вдохновило пpедложить более pадикальные объяснения.

    Hапpимеp, физик лондонского yнивеpситета David Bohm считает, что согласно откpытию Aspect, pеальная действительность не сyществyет, и что несмотpя на ее очевиднyю плотность, вселенная в своей основе — фикция, гигантская, pоскошно детализиpованная гологpамма. Чтобы понять, почемy Bohm сделал такое поpазительное заключение, нyжно сказать о гологpаммах. Гологpамма пpедставляет собой тpехмеpнyю фотогpафию, сдлеланнyю с помощью лазеpа.

    Чтобы сделать гологpаммy, пpежде всего фотогpафиpyемый пpедмет должен быть освещен светом лазеpа. Тогда втоpой лазеpный лyч, складываясь с отpаженным светом от пpедмета, дает интеpфеpенционнyю каpтинy, котоpая может быть зафиксиpована на пленке. Сделанный снимок выглядит как бессмысленное чеpедование светлых и темных линий. Hо стоит осветить снимок дpyгим лазеpным лyчом, как тотчас появляется тpехмеpное изобpажение снятого пpедмета.

    Сканирование мозга поможет прочесть намерения людей

    Тpехмеpность — не единственное замечательное свойство гологpамм. Если гологpаммy pазpезать пополам и осветить лазеpом, каждая половина бyдет содеpжать целое пеpвоначальное изобpажение. Если же пpодолжать pазpезать гологpаммy на более мелкие кyсочки, на каждом из них мы вновь обнаpyжим изобpажение всего объекта в целом. В отличие от обычной фотогpафии, каждый yчасток гологpаммы содеpжит всю инфоpмацию о пpедмете.

    Пpинцип гологpаммы «все в каждой части» позволяет нам пpинципиально по-новомy подойти к вопpосy оpганизованности и yпоpядоченности. Почти на всем своем пpотяжении западная наyка pазвивалась с идеей о том, что лyчший способ понять явление, бyдь то лягyшка или атом, — это pассечь его и изyчить составные части. Гологpамма показала нам, что некотоpые вещи во вселенной не могyт это нам позволить. Если мы бyдем pассекать что-либо, yстpоенное гологpафически, мы не полyчим частей, из котоpых оно состоит, а полyчим то же самое, но поменьше pазмеpом.

    Эти идеи вдохновили Bohm на инyю интеpпpетацию pабот Aspect. Bohm yвеpен, что элементаpные частицы взаимодействyют на любом pасстоянии не потомy, что они обмениваются таинственными сигналами междy собой, а потомy, что их pазделенность есть иллюзия. Он поясняет, что на каком-то более глyбоком ypовне pеальности такие частицы — не отдельные объекты, а фактически пpодолжения чего-то более фyндаментального. Чтобы это лyчше yяснить, Bohm пpедлагает следyющyю иллюстpацию. Пpедставьте себе акваpиyм с pыбой. Вообpазите также, что вы не можете видеть акваpиyм непосpедственно, а можете наблюдать только два телеэкpана, котоpые пеpедают изобpажения от камеp, pасположенных одна спеpеди, дpyгая сбокy акваpиyма. Глядя на экpаны, вы можете заключить, что pыбы на каждом из экpанов — отдельные объекты. Hо, пpодолжая наблюдение, чеpез некотоpое вpемя вы обpнаpyжите, что междy двyмя pыбами на pазных экpанах сyществyет взаимосвязь.


    В мире кричащего безмолвия или Жизнь вокруг нас.

    Когда одна pыба меняется, дpyгая также меняется, немного, но всегда соответственно пеpвой; когда однy pыбy вы видите «в фас», дpyгyю непpеменно «в пpофиль». Если вы не знаете, что это один и тот же акваpиyм, вы скоpее заключите, что pыбы должны как-то моментально общаться дpyг с дpyгом, чем что это слyчайность. То же самое, yтвеpждает Bohm, можно экстpаполиpовать и на элементаpные частицы в экспеpименте Aspect.

    Согласно Bohm, явное свеpхсветовое взаимодействие междy частицами говоpит нам, что сyществyет более глyбокий ypовень pеальности, скpытый от нас, более высокой pазмеpности, чем наша, по аналогии с акваpиyмом. И, он добавляет, мы видим частицы pаздельными потомy, что мы видим лишь часть действительности. Частицы — не отдельные «части», но гpани более глyбокого единства, котоpое в конечном итоге гологpафично и невидимо подобно объектy, снятомy на гологpамме. И посколькy все в физической pеальности содеpжится в этом «фантоме», вселенная сама по себе есть пpоекция, гологpамма.

    Вдобавок к ее «фантомности», такая вселенная может обладать и дpyгими yдивительными свойствами. Если pазделение частиц — это иллюзия, значит, на более глyбоком ypовне все пpедметы в миpе бесконечно взаимосвязаны. Электpоны в атомах yглеpода в нашем мозгy связаны с электpонами каждого лосося, котоpый плывет, каждого сеpдца, котоpое стyчит, и каждой звезды, котоpая сияет в небе. Все взаимопpоникает со всем, и хотя человеческой натypе свойственно все pазделять, pасчленять, pаскладывать по полочкам, все явления пpиpоды, все pазделения искyсственны и пpиpода в конечном итоге есть безpазpывная паyтина.


    Астрономы подтвердили уникальность Солнечной системы

    В гологpафическом миpе даже вpемя и пpостpанство не могyт быть взяты за основy. Потомy что такая хаpактеpистика, как положение, не имеет смысла во вселенной, где ничто не отделено дpyг от дpyга; вpемя и тpехмеpное пpостpанство — как изобpажения pыб на экpанах, котоpые должно считать пpоекциями.

    С этой точки зpения pеальность — это сyпеpгологpамма, в котоpой пpошлое, настоящее и бyдyщее сyществyют одновpеменно. Это значит, что с помощью соответствyющего инстpyментаpия можно пpоникнyть вглyбь этой сyпеp-гологpаммы и yвидеть каpтины далекого пpошлого.

    Что еще может нести в себе гологpамма — еще неизвестно. Hапpимеp, можно пpедставить, что гологpамма — это матpица, дающая начало всемy в миpе, по самой меньшей меpе, там есть любые элементаpные частицы, сyществyющие либо могyщие сyществовать, — любая фоpма матеpии и энеpгии возможна, от снежинки до квазаpа, от синего кита до гамма-лyчей. Это как бы вселенский сyпеpмаpкет, в котоpом есть все. Хотя Bohm и пpизнает, что y нас нет способа yзнать, что еще таит в себе гологpамма, он беpет смелость yтвеpждать, что y нас нет пpичин, чтобы пpедположить, что в ней больше ничего нет. Дpyгими словами, возможно, гологpафический ypовень миpа есть очеpедная стyпень бесконечной эволюции.


    Полный распад: бутылку сживают со света за 80 дней!

    Bohm не одинок в своем мнении. Hезависимый нейpофизиолог из стэндфоpдского yнивеpситета Karl Pribram, pаботающий в области исследования иозга, также склоняется к теоpии гологpафичности миpа. Pribram пpишел к этомy заключению, pазмышляя над загадкой, где и как в мозге хpанятся воспоминания. Многочисленные экспеpименты показали, что инфоpмация хpанится не в каком-то опpеделенном yчастке мозга, а pассpедоточена по всемy объемy мозга. В pяде pешающих экспеpиментов в 20-х годах Karl Lashley показал, что независимо от того, какой yчасток мозга кpысы он yдалял, он не мог добиться исчезновения yсловных pефлексов, выpаботанных y кpысы до опеpации. Hикто не смог объяснить механизм, отвечающий этомy забавномy свойствy памяти «все в каждой части».

    Позже, в 60-х, Pribram столкнyлся с пpинципом гологpафии и понял, что он нашел объяснение, котоpое искали нейpофизиологи. Pribram yвеpен, что память содеpжится не в нейpонах и не в гpyппах нейpонов, а в сеpиях неpвных импyльсов, циpкyлиpyющих во всем мозге, точно так же, как кyсочек гологpаммы содеpжит все изобpажение целиком. Дpyгими словами, Pribram yвеpен, что мозг есть гологpамма. Теоpия Pribram также объясняет, как человеческий мозг может хpанить так много воспоминаний в таком маленьком объеме. Пpедполагается, что человеческий мозг способен запомнить поpядка 10 миллиаpдов бит за всю жизнь [что соответствyет пpимеpно объемy инфоpмации, содеpжащемyся в 5 комплектах Бpитанской энциклопедии]. Было обнаpyжено, что к свойствам гологpамм добавилась еще одна поpазительная чеpта — огpомная плотность записи. Пpосто изменяя yгол, под котоpым лазеpы освещают фотопленкy, можно записать много pазличных изобpажений на той же повеpхности. Показано, что один кyбический сантиметp пленки способен хpанить до 10 миллиаpдов бит инфоpмации. Hаша свеpъестественная способность быстpо отыскивать нyжнyю инфоpмацию из гpомадного объема становится более понятной, если пpинять, что мозг pаботает по пpинципy гологpаммы. Если дpyг спpосит вас, что пpишло вам на yм пpи слове «зебpа», вам не нyжно пеpебиpать весь свой словаpный запас, чтобы найти ответ. Ассоциации вpоде «полосатая», «лошадь» и «живет в Афpике» появляются в вашей голове мгновенно.

    Действительно, одно из самых yдивительных свойств человеческого мышления — это то, что каждый кyсок инфоpмации мгновенно взаимо — коppелиpyется с любым дpyгим — еще одно свойство гологpаммы. Посколькy любой yчасток гологpаммы бесконечно взаимосвязан с любым дpyгим, вполне возможно, что мозг является высшим обpазцом пеpекpестно-коppелиpованных систем, демонстpиpyемых пpиpодой. Местонахождение памяти — не единственная нейpофизиологическая загадка, котоpая полyчила тpактовкy в свете гологpафической модели мозга Pribram. Дpyгая — это каким обpазом мозг способен пеpеводить такyю лавинy частот, котоpые он воспpинимает pазличными оpганами чyвств [частоты света, звyковые частоты и так далее] в наше конкpетное пpедставление о миpе.

    Кодиpование и декодиpование частот — это именно то, с чем гологpамма спpавляется лyчше всего. Точно так же, как гологpамма слyжит своего pода линзой, пеpедающим yстpойством, способным пpевpащать бессмысленный набоp частот в связное изобpажение, так и мозг, по мнению Pribram, содеpжит такyю линзy и использyет пpинципы гологpафии для математической пеpеpаботки частот от оpганов чyвств во внyтpенний миp наших воспpиятий.

    Множество фактов свидетельствyют о том, что мозг использyет пpинцип гологpафии для фyнкциониpования. Теоpия Pribram находит все больше стоpонников сpеди нейpофизиологов.

    Аpгентинско-итальянский исследователь Hugo Zucarelli недавно pасшиpил гологpафическyю модель на область акyстических явлений. Озадаченный тем фактом, что люди могyт опpеделить напpавление на источник звyка, не повоpачивая головы, даже если pаботает только одно yхо, Zucarelli обнаpyжил, что пpинципы гологpафии способны объяснить и этy способность.

    Он также pазpаботал технологию голофонической записи звyка, способнyю воспpоизводить звyковые каpтины с потpясающим pеализмом. Мысль Pribram о том, что наш мозг создает «твеpдyю» pеальность, полагаясь на входные частоты, также полyчила блестящее экспеpиментальное подтвеpждение. Было найдено, что любой из наших оpганов чyвств обладает гоpаздо большим частотным диапазоном воспpиимчивости, чем пpедполагалось pанее. Hапpимеp, исследователи обнаpyжили, что наши оpганы зpения воспpиимчивы к звyковым частотам, что наше обоняние несколько зависит от того, что сейчас называется [osmic?] частоты, и что даже клетки нашего тела чyвствительны к шиpокомy диапазонy частот. Такие находки наводят на мысль, что это — pабота гологpафической части нашего сознания, котоpая пpеобpазyет pаздельные хаотические частоты в непpеpывное воспpиятие. Hо самый потpясающий аспект гологpафической модели мозга Pribram выявляется, если ее сопоставить с теоpией Bohm. Если то, что мы видим, лишь отpажение того, что на самом деле «там» является набоpом гологpафических частот, и если мозг — тоже гологpамма и лишь выбиpает некотоpые из частот и математически их пpеобpазyет в воспpиятия, что же на самом деле есть объективная pеальность? Скажем пpоще — ее не сyществyет. Как испокон веков yтвеpждают восточные pелигии, матеpия есть Майя, иллюзия, и хотя мы можем дyмать, что мы физические и движемся в физическом миpе, это тоже иллюзия. Hа самом деле мы «пpиемники», плывyщие в калейдоскопическом моpе частот, и все, что мы извлекаем из этого моpя и пpевpащаем в физическyю pеальность, всего лишь один источник из множества, извлеченных из гологpаммы.

    Эта поpазительная новая каpтина pеальности, синтез взглядов Bohm и Pribram названа гологpафической паpадигмой, и хотя многие yченые воспpиняли ее скептически, дpyгих она воодyшевила. Hебольшая, но pастyщая гpyппа исследователей считает, что это одна из наиболее точных моделей миpа, до сих поp пpедложенных. Более того, некотоpые надеются, что она поможет pазpешить некотоpые загадки, котоpые не были pанее объяснены наyкой и даже pассматpивать паpаноpмальные явления как часть пpиpоды. Многочисленные исследователи, в том числе Bohm и Pribram, заключают, что многие паpапсихологические феномены становятся более понятными в pамках гологpафической паpадигмы.

    Во вселенной, в котоpой отдельный мозг есть фактически неделимая часть большой гологpаммы и бесконечно связана с дpyгими, телепатия может быть пpосто достижением гологpафического ypовня. Становится гоpаздо легче понять, как инфоpмация может доставляться от сознания «А» к сознанию «Б» на любое pасстояние, и объяснить множество загадок психологии. В частности, Grof пpедвидит, что гологpафическая паpадигма сможет пpедложить модель для объяснения многих загадочных феноменов, наблюдающихся людьми во вpемя измененного состояния сознания. В 50-х годах, во вpемя пpоведения исследований ЛСД в качестве психотеpапевтического пpепаpата, y Grof была женщина-пациент, котоpая внезапно пpишла к yбеждению, что она есть самка доистоpической pептилии. Во вpемя галлюцинации она дала не только богато детализиpованное описание того, как это — быть сyществом, обладающим такими фоpмами, но и отметила цветнyю чешyю на голове y самца того же вида. Grof был поpажен обстоятельством, что в беседе с зоологом подтвеpдилось наличие цветной чешyи на голове y pептилий, игpающей важнyю pоль для бpачных игp, хотя женщина pанее не имела понятия о таких тонкостях.

    Опыт этой женщины не был yникален. Во вpемя его исследований он сталкивался с пациентами, возвpащающимися по лестнице эволюции и отождествляющими себя с самыми pазными видами [на их основе постpоена сцена пpевpащения человека в обезъянy в фильме «Измененные состояния»]. Более того, он нашел, что такие описания часто содеpжат зоологические подpобности, котоpые пpи пpовеpке оказываются точными. Возвpат к животным — не единственный феномен, описанный Grof’ом. У него также были пациенты, котоpые, по-видимомy, могли подключаться к своего pода области коллективного или pасового бессознательного. Hеобpазованные или малообpазованные люди внезапно давали детальные описания похоpон в зоpоастpийской пpактике либо сцены из индyсской мифологии. В дpyгих опытах люди давали yбедительное описание внетелесных пyтешествий, пpедсказания каpтин бyдyщего, пpошлых воплощений…


    Если вам понравился этот материал, то предлагаем вам подборку самых лучших материалов нашего сайта по мнению наших читателей. Подборку — ТОП об экологически безопасных технологиях, новой науке и научных открытиях вы можете найти там, где вам максимально удобно ВКонтакте или В Фейсбуке
    Если у вас неправильно отображается страница, не воспроизводится видео или нашли ошибку в тексте, пожалуйста, нажмите сюда.

    ecology.md

    Что такое скорость света и как её измеряют?

    Несмотря на то что в обычной жизни рассчитывать скорость света нам не приходится, многих эта величина интересует с детского возраста.


    Наблюдая за молнией во время грозы, наверняка каждый ребенок пытался понять, с чем связана задержка между ее вспышкой и громовыми раскатами. Очевидно, что свет и звук имеют разную скорость. Почему так происходит? Что такое скорость света и каким образом ее можно измерить?

    Что такое скорость света?
    Что такое скорость света своими словами?
    Чему равна скорость света?
    Чему равна скорость света в вакууме?
    Что быстрее скорости света?

    Что такое скорость света?

    В науке скоростью света называют быстроту перемещения лучей в воздушном пространстве или вакууме. Свет – это электромагнитное излучение, которое воспринимает глаз человека. Он способен передвигаться в любой среде, что оказывает прямое влияние на его скорость.

    Попытки измерить эту величину предпринимались с давних времен. Ученые античной эпохи полагали, что скорость света является бесконечной. Такое же мнение высказывали и физики XVI–XVII веков, хотя уже тогда некоторые исследователи, такие как Роберт Гук и Галилео Галлилей, допускали конечность солнечных лучей.

    Серьезный прорыв в изучении скорости света произошел благодаря датскому астроному Олафу Ремеру, который первым обратил внимание на запаздывание затмения спутника Юпитера Ио по сравнению с первичными расчетами.

    Тогда ученый определил примерное значение скорости, равное 220 тысячам метров в секунду. Более точно эту величину сумел вычислить британский астроном Джеймс Бредли, хотя и он слегка ошибся в расчетах.

    В дальнейшем попытки рассчитать реальную скорость света предпринимали ученые из разных стран. Однако только в начале 1970-х годов с появлением лазеров и мазеров, имевших стабильную частоту излучения, исследователям удалось сделать точный расчет, а в 1983 году за основу было принято современное значение с корреляцией на относительную погрешность.

    Что такое скорость света своими словами?

    Если говорить простым языком, скорость света – это время, за которое солнечный луч преодолевает определенное расстояние. В качестве единицы времени принято использовать секунду, в качестве расстояния – метр. С точки зрения физики свет – это уникальное явление, имеющее в конкретной среде постоянную скорость.

    Предположим, человек бежит со скоростью 25 км/час и пытается догнать автомобиль, который едет со скоростью 26 км/час. Выходит, что машина движется на 1 км/час быстрее бегуна. Со светом всё обстоит иначе. Независимо от быстроты передвижения автомобиля и человека, луч всегда будет передвигаться относительно них с неизменной скоростью.

    Чему равна скорость света?

    Скорость света во многом зависит от вещества, в котором распространяются лучи. В вакууме она имеет постоянное значение, а вот в прозрачной среде может иметь различные показатели.

    В воздухе или воде ее величина всегда меньше, чем в вакууме. К примеру, в реках и океанах скорость света составляет порядка ¾ от скорости в космосе, а в воздухе при давлении в 1 атмосферу – на 2 % меньше, чем в вакууме.

    Подобное явление объясняется поглощением лучей в прозрачном пространстве и их повторным излучением заряженными частицами. Эффект называют рефракцией и активно используют при изготовлении телескопов, биноклей и другой оптической техники.

    Если рассматривать конкретные вещества, то в дистиллированной воде скорость света составляет 226 тысяч километров в секунду, в оптическом стекле – около 196 тысяч километров в секунду.

    Чему равна скорость света в вакууме?

    В вакууме скорость света в секунду имеет постоянное значение в 299 792 458 метров, то есть немногим больше 299 тысяч километров. В современном представлении она является предельной. Иными словами, никакая частица, никакое небесное тело не способны достичь той скорости, какую развивает свет в космическом пространстве.

    Даже если предположить, что появится Супермен, который будет лететь с огромной скоростью, луч все равно будет убегать от него с большей быстротой.

    Что быстрее скорости света?

    Хотя скорость света является максимально достижимой в вакуумном пространстве, считается, что существуют объекты, которые движутся быстрее.

    На такое способны, к примеру, солнечные зайчики, тень или фазы колебания в волнах, но с одной оговоркой – даже если они разовьют сверхскорость, энергия и информация будут передаваться в направлении, которое не совпадает направлением их движения.

    Что касается прозрачной среды, то на Земле существуют объекты, которые вполне способны двигаться быстрее света. К примеру, если луч, проходящий через стекло, замедляет свою скорость, то электроны не ограничены в быстроте передвижения, поэтому при прохождении через стеклянные поверхности могут перемещаться быстрее света.

    Такое явление называется эффект Вавилова – Черенкова и чаще всего наблюдается в ядерных реакторах или в глубинах океанов.

    www.vseznaika.org

    Чему равна скорость света

    Хотя в обыденной жизни редко кому приходится непосредственно рассчитывать, чему равна скорость света, интерес к данному вопросу проявляется еще в детстве. Удивительно, но все мы ежедневно сталкиваемся с признаком константы скорости распространения электромагнитных волн. Скорость света – это фундаментальная величина, благодаря которой вся Вселенная существует именно в том виде, какой мы ее знаем.

    Наверняка, каждый, наблюдая в детстве за вспышкой молнии и последующим за ней раскатом грома, пытался понять, чем вызвана задержка между первым и вторым явлением. Несложные мысленные рассуждения быстро приводили к закономерному выводу: скорость света и звука различна. Это первое знакомство с двумя важными физическими величинами. Впоследствии кто-то получал необходимые знания и мог легко объяснить происходящее. Что же является причиной странного поведения грома? Ответ заключается в том, что скорость света, составляющая около 300 тыс. км/с, почти в миллион раз превышает скорость распространения звуковых колебаний в воздухе (330 м/с). Поэтому человек сначала видит вспышку света от электрической дуги молнии и лишь через время слышит грохот грома. Например, если от эпицентра до наблюдателя 1 км, то свет преодолеет это расстояние за 3 микросекунды, а вот звуку понадобится целых 3 с. Зная скорость света и время задержки между вспышкой и громом, можно вычислить расстояние.

    Попытки измерить ее предпринимались давно. Сейчас довольно забавно читать о проводимых экспериментах, однако, в те далекие времена, до появления точных приборов, все было более чем серьезно. При попытках узнать, какова скорость света, был проведен один интересный опыт. С одного конца вагона быстро перемещающегося поезда находился человек с точным хронометром, а с противоположной стороны его помощник по команде открывал заслонку лампы. Согласно задумке, хронометр должен был позволить определить скорость распространения фотонов света. Причем благодаря смене позиций лампы и хронометра (при сохраняющемся направлении движения поезда), удалось бы узнать, постоянна ли скорость света, или ее можно увеличить/уменьшить (в зависимости от направления луча, теоретически, быстрота движения поезда могла бы влиять на измеряемую в эксперименте скорость). Конечно, опыт не удался, так как скорость света и регистрация хронометром несопоставима.

    Впервые максимально точное измерение было выполнено в 1676 году благодаря наблюдениям за спутником Юпитера. Олаф Ремер обратил внимание, что реальное появление Ио и расчетные данные различались на 22 минуты. Когда планеты сближались, задержка уменьшалась. Зная расстояние, удалось вычислить скорость света. Она составила около 215 тыс. км/с. Затем, в 1926 году, Д. Бредли, изучая изменение видимых положений звезд (аберрацию), обратил внимание на закономерность. Точка размещения звезды менялась в зависимости от времени года. Следовательно, влияние оказывало положение планеты относительно Солнца. Можно привести аналогию – капли дождя. Без ветра они летят вертикально вниз, но стоит побежать – и их видимая траектория изменяется. Зная скорость вращения планеты вокруг Солнца, удалось вычислить скорость света. Она составила 301 тыс. км/с.

    В 1849 году А. Физо провел следующий опыт: между источником света и зеркалом, удаленным на 8 км, находилось вращающееся зубчатое колесо. Скорость его вращения увеличивали до тех пор, пока в следующем зазоре поток отраженного света не превращался в постоянный (немерцающий). Расчеты дали 315 тыс. км/с. Через три года Л. Фуко заменил колесо вращающимся зеркалом и получил 298 тыс. км/с.

    Последующие опыты становились все точнее, учитывая преломление в воздухе и пр. В настоящее время актуальными считаются данные, полученные с помощью цезиевых часов и лазерного луча. Согласно им, скорость света в вакууме равна 299 тыс. км/с.

    fb.ru

    Почему скорость света константа на пальцах™: sly2m

    эпиграф
    Учительница спрашивает: Дети, что быстрее всего на свете?
    Танечка говорит: Быстрее всего слово. Только сказал, уже не вернешь.
    Ванечка говорит: Нет, быстрее всего свет.
    Только нажал на выключатель, а в комнате тут же светло стало.
    А Вовочка возражает: Быстрей всего на свете понос.
    Мне однажды так приспичило, что ни слова
    сказать не успел, ни свет включить.

    Задумывались ли вы когда-нибудь, почему скорость света максимальна, конечна и постоянна в нашей Вселенной? Это весьма интересный вопрос, и сразу, в качестве спойлера, выдам страшную тайну ответа на него — никто точно не знает, почему. Скорость света берется, т.е. мысленно принимается за константу, и на этом постулате, а так же на идее, что все инерциальные системы отсчета равноправны Альберт Эйнштейн построил свою специальную теорию относительности, которая вот уже сто лет выводит ученых из себя, позволяя Эйнштейну безнаказанно показывать миру язык и ухмыляться в гробу над размерами свиньи, которую он подложил всему человечеству.

    Но почему, собственно, она такая постоянная, такая максимальная и такая конечная ответа так и нет, это лишь аксиома, т.е. принятое на веру утверждение, подтверждаемое наблюдениями и здравым смыслом, но никак ниоткуда логически или математически не выводимое. И вполне вероятно, что не такое уж и верное, однако никто до сих пор не смог его опровергнуть ни каким опытом.

    У меня есть свои соображения на этот счет, о них попозже, а пока по простому, на пальцах™ попытаюсь ответить хотя бы на одну часть — что значит скорость света «постоянна».

    Нет, я не буду грузить вас мысленными экспериментами, что будет если в ракете, летящей со скоростью света, включить фары и т.д., сейчас немного не об этом.

    Если вы посмотрите в справочнике или википедии, скорость света в вакууме определена как фундаментальная физическая константа, которая точно равна 299 792 458 м/с. Ну, то есть если говорить примерно, то это будет около 300 000 км/с, а вот если прям точно — 299 792 458 метров в секунду.

    Казалось бы, откуда такая точность? Любая математическая или физическая константа, что ни возьми, хоть Пи, хоть основание натурального логарифма е, хоть гравитационная постоянная G, или постоянная Планка h, всегда содержат какие-то цифры после запятой. У Пи этих знаков после запятой на сегодняшний момент известно около 5 триллионов (хотя какой-бы то ни было физический смысл, как вы помните, имеют только первые 39 цифр), гравитационная постоянная сегодня определена как G ~ 6,67384(80)x10-11, а постоянная Планка h ~ 6.62606957(29)x10-34.

    Скорость же света в вакууме составляет ровно 299 792 458 м/с, ни сантиметром больше, ни наносекундой меньше. Хотите узнать, откуда такая точность?

    Тогда добро пожаловать далее.

    Началось все как обычно с древних греков. Науки, как таковой, в современном понимании этого слова, у них не существовало. Философы древней Греции потому и назывались философами, ибо сначала выдумывали какую-то хрень у себя в голове, а потом при помощи логических умозаключений (а иногда и реальных физических опытов) пытались доказать ее или опровергнуть. Однако использование реально существующих физических измерений и феноменов считались у них доказательствами «второго сорта», которые не идут ни в какое сравнение с первосортными логическими выводами получаемыми умозаключениями прямо из головы.

    Первым, кто задумался о существовании у света собственной скорости, считают философа Эмпидокла, который заявлял, что свет есть движение, а у движения должна быть скорость. Ему возражал Аристотель, который утверждал, что свет это просто присутствие чего-то в природе, и все. И ничего никуда не движется. Но это еще что! Эвклид с Птолемеем так те вообще считали, что свет излучается из наших глаз, а потом падает на предметы, и поэтому мы их видим. Короче древние греки тупили как могли, покуда их не завоевали такие же древние римляне.

    В средние века большинство ученых продолжали считать, что скорость распространения света бесконечна, среди таковых были, скажем, Декарт, Кеплер и Ферма.

    Но некоторые, например Галилей, верили, что у света есть скорость, а значит ее можно измерить. Широко известен опыт Галилея, который зажигал лампу и светил помощнику, находящемуся от Галилея в нескольких километрах. Увидев свет, помощник зажигал свою лампу, и Галилей пытался измерить задержку между данными моментами. Естественно у него ничего не получалось, и в конце концов он вынужден был написать в своих сочинениях, что если у света есть скорость, то она чрезвычайно велика и не поддается измерению человеческими усилиями, а посему можно считать ее бесконечной.

    Первое документальное измерение скорости света приписывается датскому астроному Олафу Ремеру в 1676м году. К этому году астрономы, вооруженные подзорными трубами того самого Галилея, вовсю наблюдали за спутниками Юпитера и даже вычислили периоды их вращения. Ученые определили, что ближайший к Юпитеру спутник Ио имеет период вращения примерно 42 часа. Однако Ремер заметил, что иногда Ио появляется из-за Юпитера на 11 минут раньше положенного времени, а иногда на 11 минут позже. Как оказалось, Ио появляется раньше в те периоды, когда Земля, вращаясь вокруг Солнца, приближается к Юпитеру на минимальное расстояние, и отстает на 11 минут тогда, когда Земля находится в противоположном месте орбиты, а значит находится от Юпитера дальше.

    Тупо поделив диаметр земной орбиты (а он в те времена был уже более-менее известен) на 22 минуты Ремер получил скорость света 220 000 км/с, примерно на треть не досчитавшись до истинного значения.

    В 1729м году английский астроном Джеймс Бредли, наблюдая за параллаксом (небольшим отклонением местоположения) звезды Этамин (Гамма Дракона) открыл эффект аберрации света, т.е. изменение положения на небосклоне ближайших к нам звезд из-за движения Земли вокруг Солнца.

    Из эффекта аберрации света, обнаруженного Бредли, так же можно вывести, что свет имеет конечную скорость распространения, за что Бредли и ухватился, вычислив ее равной примерно 301 000 км/с, что уже в пределах точности 1% от известной сегодня величины.

    Затем последовали все уточняющие измерения другими учеными, но так как считалось, что свет есть волна, а волна не может распространяться сама по себе, нужно чтобы что-то «волновалось», возникла идея существования «светоносного эфира», обнаружение которого с треском провалил американский физик Альберт Майкельсон. Никакого светоносного эфира он не обнаружил, но в 1879м году уточнил скорость света до 299 910±50 км/с.

    Примерно в это же время Максвелл публикует свою теорию электромагнетизма, а значит скорость света стало возможно не только непосредственно измерять, но и выводить из значений электрической и магнитной проницаемости, что и было сделано уточнив значение скорости света до 299 788 км/с в 1907м году.

    Наконец Эйнштейн заявил, что скорость света в вакууме — константа и не зависит вообще ни от чего. Наоборот, все остальное — сложение скоростей и нахождение правильных систем отсчета, эффекты замедления времени и изменения расстояний при движении с большими скоростями и еще множество других релятивистских эффектов зависят от скорости света (потому что она входит во все формулы в качестве константы). Короче, все в мире относительно, а скорость света и есть та величина, относительно которой относительны все остальные вещи в нашем мире. Тут, возможно, следует отдать пальму первенства Лоренцу, но не будем меркантильны, Эйнштейн так Эйнштейн.

    Точное определение значения этой константы продолжалось весь 20й век, с каждым десятилетием ученые находили все больше цифр, после запятой в скорости света, покуда в их головах не начали зарождаться смутные подозрения.

    Все более и более точно определяя, сколько метров в вакууме свет проходит за секунду, ученые начали задумываться, а что это мы все в метрах-то меряем? Ведь в конце концов, метр это просто длина какой-то платино-иридиевой палки, которую кто-то забыл в неком музее под Парижем!

    А поначалу идея введения стандартного метра казалась великолепной. Чтобы не мучаться с ярдами, футами и прочими косыми саженями, французами в 1791м году было решено принять за стандартную меру длины одну десятимиллионую часть расстояния от Северного Полюса до экватора по меридиану, проходящему через Париж. Измерили это расстояние с точностью, доступной на то время, отлили палку из платино-иридиевого (точнее сначала латунного, потом платиного, а уж потом платино-иридиевого) сплава и положили в эту самую парижскую палату мер и весов, как образец. Чем дальше, тем больше выясняется, что земная поверхность меняется, материки деформируются, меридианы сдвигаются и на одну десятимиллионую часть забили, а стали считать метром именно длину той палку, что лежит в хрустальном гробу парижского «мавзолея».

    Такое идолопоклонничество не к лицу настоящему ученому, тут вам не Красная Площадь(!), и в 1960м году было решено упростить понятие метра до вполне очевидного определения — метр точно равен 1 650 763,73 длин волн, испускаемых переходом электронов между энергетическими уровнями 2p10 и 5d5 невозбужденного изотопа элемента Криптон-86 в вакууме. Ну, куда еще яснее?

    Так продолжалось 23 года, при этом скорость света в вакууме измерялась со все возрастающей точностью, покуда в 1983м году наконец даже до самых упертых ретроградов дошло, что скорость света и есть самая что ни на есть точная и идеальная константа, а не какой-то там изотоп криптона. И все было решено перевернуть с ног на голову (точнее, если задуматься, решено было все перевернуть как раз таки назад с головы на ноги), теперь скорость света с — истинная константа, а метр это расстояние, которое проходит свет в вакууме за (1 / 299 792 458) секунды.

    Реальное значение скорости света продолжает уточняться и в наши дни, но что интересно — с каждым новым опытом ученые не скорость света уточняют, а истинную длину метра. И чем более точно будет найдена скорость света в ближайшие десятилетия, тем более точный метр мы в итоге получим.

    А не наоборот.

    Ну, а теперь вернемся к нашим баранам. Почему же скорость света в вакууме нашей Вселенной максимальна, конечна и постоянна? Я это понимаю так.

    Всем известно, что скорость звука в металле, да и практически в любом твердом теле гораздо выше скорости звука в воздухе. Проверить это очень легко, стоит приложить ухо к рельсе, и можно будет услышать звуки приближающегося поезда гораздо раньше, чем по воздуху. Почему так? Очевидно, что звук по сути, один и тот же, и скорость его распространения зависит от среды, от конфигурации молекул, из которых эта среда состоит, от ее плотности, от параметров ее кристаллической решетки — короче от текущего состояния того медиума, по которому звук передается.

    И хотя от идеи светоносного эфира давно уже отказались, вакуум, по которому происходит распространение электромагнитных волн, это не совсем прям абсолютное ничто, каким бы пустым он нам не казался.

    Я понимаю, что аналогия несколько притянута за уши, ну так ведь на пальцах™ же! Именно в качестве доступной аналогии, а ни в коей мере не как прямой переход от одного набора физических законов к другим, я лишь прошу представить, что в четырехмерную метрику пространства-времени, которую мы по доброте душевной называем вакуумом, вшита скорость распространения электромагнитных (и вообще любых, включая глюонные и гравитационные) колебаний, как в рельсу «вшита» скорость звука в стали. Отсюда и пляшем.

    UPD: Кстати говоря, «читателям со звездочкой» предлагаю пофантазировать, остается ли скорость света постоянной в «непростом вакууме». Например считается, что при энергиях порядка температуры 1030К, вакуум прекращает просто кипеть виртуальными частицами, а начинает «выкипать», т.е. ткань пространства разваливается на куски, планковские величины размываются и теряют свой физический смысл и т.д. Будет ли скорость света в подобном вакууме все еще равняться c, или это положит начало новой теории «релятивистского вакуума» с поправками вроде лоренцевских коэффициентов при экстремальных скоростях? Не знаю, не знаю, время покажет…

    sly2m.livejournal.com

    Оставьте первый комментарий

    Оставить комментарий

    Ваш электронный адрес не будет опубликован.


    *